Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2023]
Title:Spatial Attention and Syntax Rule Enhanced Tree Decoder for Offine Handwritten Mathematical Expression Recognition
View PDFAbstract:Offline Handwritten Mathematical Expression Recognition (HMER) has been dramatically advanced recently by employing tree decoders as part of the encoder-decoder method. Despite the tree decoder-based methods regard the expressions as a tree and parse 2D spatial structure to the tree nodes sequence, the performance of existing works is still poor due to the inevitable tree nodes prediction errors. Besides, they lack syntax rules to regulate the output of expressions. In this paper, we propose a novel model called Spatial Attention and Syntax Rule Enhanced Tree Decoder (SS-TD), which is equipped with spatial attention mechanism to alleviate the prediction error of tree structure and use syntax masks (obtained from the transformation of syntax rules) to constrain the occurrence of ungrammatical mathematical expression. In this way, our model can effectively describe tree structure and increase the accuracy of output expression. Experiments show that SS-TD achieves better recognition performance than prior models on CROHME 14/16/19 datasets, demonstrating the effectiveness of our model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.