Physics > Optics
[Submitted on 23 Mar 2023]
Title:Universal Linear Intensity Transformations Using Spatially-Incoherent Diffractive Processors
View PDFAbstract:Under spatially-coherent light, a diffractive optical network composed of structured surfaces can be designed to perform any arbitrary complex-valued linear transformation between its input and output fields-of-view (FOVs) if the total number (N) of optimizable phase-only diffractive features is greater than or equal to ~2 Ni x No, where Ni and No refer to the number of useful pixels at the input and the output FOVs, respectively. Here we report the design of a spatially-incoherent diffractive optical processor that can approximate any arbitrary linear transformation in time-averaged intensity between its input and output FOVs. Under spatially-incoherent monochromatic light, the spatially-varying intensity point spread functon(H) of a diffractive network, corresponding to a given, arbitrarily-selected linear intensity transformation, can be written as H(m,n;m',n')=|h(m,n;m',n')|^2, where h is the spatially-coherent point-spread function of the same diffractive network, and (m,n) and (m',n') define the coordinates of the output and input FOVs, respectively. Using deep learning, supervised through examples of input-output profiles, we numerically demonstrate that a spatially-incoherent diffractive network can be trained to all-optically perform any arbitrary linear intensity transformation between its input and output if N is greater than or equal to ~2 Ni x No. These results constitute the first demonstration of universal linear intensity transformations performed on an input FOV under spatially-incoherent illumination and will be useful for designing all-optical visual processors that can work with incoherent, natural light.
Current browse context:
physics.optics
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.