Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 25 Mar 2023]
Title:Multi-pooling 3D Convolutional Neural Network for fMRI Classification of Visual Brain States
View PDFAbstract:Neural decoding of visual object classification via functional magnetic resonance imaging (fMRI) data is challenging and is vital to understand underlying brain mechanisms. This paper proposed a multi-pooling 3D convolutional neural network (MP3DCNN) to improve fMRI classification accuracy. MP3DCNN is mainly composed of a three-layer 3DCNN, where the first and second layers of 3D convolutions each have a branch of pooling connection. The results showed that this model can improve the classification accuracy for categorical (face vs. object), face sub-categorical (male face vs. female face), and object sub-categorical (natural object vs. artificial object) classifications from 1.684% to 14.918% over the previous study in decoding brain mechanisms.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.