Quantum Physics
[Submitted on 27 Mar 2023]
Title:Some Initial Guidelines for Building Reusable Quantum Oracles
View PDFAbstract:The evolution of quantum hardware is highlighting the need for advances in quantum software engineering that help developers create quantum software with good quality attributes. Specifically, reusability has been traditionally considered an important quality attribute in terms of efficiency of cost and effort. Increasing the reusability of quantum software will help developers create more complex solutions, by reusing simpler components, with better quality attributes, as long as the reused components have also these attributes. This work focuses on the reusability of oracles, a well-known pattern of quantum algorithms that can be used to perform functions used as input by other algorithms. In particular, in this work, we present several guidelines for making reusable quantum oracles. These guidelines include three different levels for oracle reuse: the ideas inspiring the oracle, the function which creates the oracle, and the oracle itself. To demonstrate these guidelines, two different implementations of a range of integers oracle have been built by reusing simpler oracles. The quality of these implementations is evaluated in terms of functionality and quantum circuit depth. Then, we provide an example of documentation following the proposed guidelines for both implementations to foster reuse of the provided oracles. This work aims to be a first point of discussion towards quantum software reusability. Additional work is needed to establish more specific criteria for quantum software reusability.
Submission history
From: Daniel Talavan-Vega [view email][v1] Mon, 27 Mar 2023 07:45:14 UTC (761 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.