Computer Science > Software Engineering
[Submitted on 28 Mar 2023]
Title:CM-CASL: Comparison-based Performance Modeling of Software Systems via Collaborative Active and Semisupervised Learning
View PDFAbstract:Configuration tuning for large software systems is generally challenging due to the complex configuration space and expensive performance evaluation. Most existing approaches follow a two-phase process, first learning a regression-based performance prediction model on available samples and then searching for the configurations with satisfactory performance using the learned model. Such regression-based models often suffer from the scarcity of samples due to the enormous time and resources required to run a large software system with a specific configuration. Moreover, previous studies have shown that even a highly accurate regression-based model may fail to discern the relative merit between two configurations, whereas performance comparison is actually one fundamental strategy for configuration tuning. To address these issues, this paper proposes CM-CASL, a Comparison-based performance Modeling approach for software systems via Collaborative Active and Semisupervised Learning. CM-CASL learns a classification model that compares the performance of two given configurations, and enhances the samples through a collaborative labeling process by both human experts and classifiers using an integration of active and semisupervised learning. Experimental results demonstrate that CM-CASL outperforms two state-of-the-art performance modeling approaches in terms of both classification accuracy and rank accuracy, and thus provides a better performance model for the subsequent work of configuration tuning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.