Computer Science > Robotics
[Submitted on 3 Apr 2023]
Title:A Hierarchical Multi-Vehicle Coordinated Motion Planning Method based on Interactive Spatio-Temporal Corridors
View PDFAbstract:Multi-vehicle coordinated motion planning has always been challenged to safely and efficiently resolve conflicts under non-holonomic dynamic constraints. Constructing spatial-temporal corridors for multi-vehicle can decouple the high-dimensional conflicts and further reduce the difficulty of obtaining feasible trajectories. Therefore, this paper proposes a novel hierarchical method based on interactive spatio-temporal corridors (ISTCs). In the first layer, based on the initial guidance trajectories, Mixed Integer Quadratic Programming is designed to construct ISTCs capable of resolving conflicts in generic multi-vehicle scenarios. And then in the second layer, Non-Linear Programming is settled to generate in-corridor trajectories that satisfy the vehicle dynamics. By introducing ISTCs, the multi-vehicle coordinated motion planning problem is able to be decoupled into single-vehicle trajectory optimization problems, which greatly decentralizes the computational pressure and has great potential for real-world applications. Besides, the proposed method searches for feasible solutions in the 3-D $(x,y,t)$ configuration space, preserving more possibilities than the traditional velocity-path decoupling method. Simulated experiments in unsignalized intersection and challenging dense scenarios have been conduced to verify the feasibility and adaptability of the proposed framework.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.