Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Apr 2023 (v1), last revised 29 Mar 2024 (this version, v2)]
Title:VicTR: Video-conditioned Text Representations for Activity Recognition
View PDF HTML (experimental)Abstract:Vision-Language models (VLMs) have excelled in the image-domain -- especially in zero-shot settings -- thanks to the availability of vast pretraining data (i.e., paired image-text samples). However for videos, such paired data is not as abundant. Therefore, video-VLMs are usually designed by adapting pretrained image-VLMs to the video-domain, instead of training from scratch. All such recipes rely on augmenting visual embeddings with temporal information (i.e., image $\rightarrow$ video), often keeping text embeddings unchanged or even being discarded. In this paper, we argue the contrary, that better video-VLMs can be designed by focusing more on augmenting text, rather than visual information. More specifically, we introduce Video-conditioned Text Representations (VicTR): a form of text embeddings optimized w.r.t. visual embeddings, creating a more-flexible contrastive latent space. Our model can further make use of freely-available semantic information, in the form of visually-grounded auxiliary text (e.g. object or scene information). We evaluate our model on few-shot, zero-shot (HMDB-51, UCF-101), short-form (Kinetics-400) and long-form (Charades) activity recognition benchmarks, showing strong performance among video-VLMs.
Submission history
From: Kumara Kahatapitiya [view email][v1] Wed, 5 Apr 2023 16:30:36 UTC (827 KB)
[v2] Fri, 29 Mar 2024 16:56:33 UTC (974 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.