Mathematics > Optimization and Control
[Submitted on 5 Apr 2023 (v1), last revised 11 Dec 2023 (this version, v2)]
Title:A Unified Approach to Optimally Solving Sensor Scheduling and Sensor Selection Problems in Kalman Filtering
View PDF HTML (experimental)Abstract:We consider a general form of the sensor scheduling problem for state estimation of linear dynamical systems, which involves selecting sensors that minimize the trace of the Kalman filter error covariance (weighted by a positive semidefinite matrix) subject to polyhedral constraints on the selected sensors. This general form captures several well-studied problems including sensor placement, sensor scheduling with budget constraints, and Linear Quadratic Gaussian (LQG) control and sensing co-design. We present a mixed integer optimization approach that is derived by exploiting the optimality of the Kalman filter. While existing work has focused on approximate methods to specific problem variants, our work provides a unified approach to computing optimal solutions to the general version of sensor scheduling. In simulation, we show this approach finds optimal solutions for systems with 30 to 50 states in seconds.
Submission history
From: Shamak Dutta [view email][v1] Wed, 5 Apr 2023 18:42:41 UTC (514 KB)
[v2] Mon, 11 Dec 2023 22:41:08 UTC (514 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.