Mathematics > Optimization and Control
[Submitted on 11 Apr 2023 (v1), last revised 21 May 2024 (this version, v2)]
Title:Learning-based Rigid Tube Model Predictive Control
View PDF HTML (experimental)Abstract:This paper is concerned with model predictive control (MPC) of discrete-time linear systems subject to bounded additive disturbance and mixed constraints on the state and input, whereas the true disturbance set is unknown. Unlike most existing work on robust MPC, we propose an algorithm incorporating online learning that builds on prior knowledge of the disturbance, i.e., a known but conservative disturbance set. We approximate the true disturbance set at each time step with a parameterised set, which is referred to as a quantified disturbance set, using disturbance realisations. A key novelty is that the parameterisation of these quantified disturbance sets enjoys desirable properties such that the quantified disturbance set and its corresponding rigid tube bounding disturbance propagation can be efficiently updated online. We provide statistical gaps between the true and quantified disturbance sets, based on which, probabilistic recursive feasibility of MPC optimisation problems is discussed. Numerical simulations are provided to demonstrate the effectiveness of our proposed algorithm and compare with conventional robust MPC algorithms.
Submission history
From: Yulong Gao [view email][v1] Tue, 11 Apr 2023 10:03:40 UTC (1,755 KB)
[v2] Tue, 21 May 2024 08:47:00 UTC (921 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.