Computer Science > Computation and Language
[Submitted on 17 Apr 2023 (v1), last revised 24 Jul 2023 (this version, v3)]
Title:Classification of US Supreme Court Cases using BERT-Based Techniques
View PDFAbstract:Models based on bidirectional encoder representations from transformers (BERT) produce state of the art (SOTA) results on many natural language processing (NLP) tasks such as named entity recognition (NER), part-of-speech (POS) tagging etc. An interesting phenomenon occurs when classifying long documents such as those from the US supreme court where BERT-based models can be considered difficult to use on a first-pass or out-of-the-box basis. In this paper, we experiment with several BERT-based classification techniques for US supreme court decisions or supreme court database (SCDB) and compare them with the previous SOTA results. We then compare our results specifically with SOTA models for long documents. We compare our results for two classification tasks: (1) a broad classification task with 15 categories and (2) a fine-grained classification task with 279 categories. Our best result produces an accuracy of 80\% on the 15 broad categories and 60\% on the fine-grained 279 categories which marks an improvement of 8\% and 28\% respectively from previously reported SOTA results.
Submission history
From: Shubham Vatsal [view email][v1] Mon, 17 Apr 2023 22:53:54 UTC (214 KB)
[v2] Tue, 16 May 2023 19:55:51 UTC (214 KB)
[v3] Mon, 24 Jul 2023 15:33:25 UTC (200 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.