Computer Science > Human-Computer Interaction
[Submitted on 18 Apr 2023]
Title:A Systematic Literature Review of User Trust in AI-Enabled Systems: An HCI Perspective
View PDFAbstract:User trust in Artificial Intelligence (AI) enabled systems has been increasingly recognized and proven as a key element to fostering adoption. It has been suggested that AI-enabled systems must go beyond technical-centric approaches and towards embracing a more human centric approach, a core principle of the human-computer interaction (HCI) field. This review aims to provide an overview of the user trust definitions, influencing factors, and measurement methods from 23 empirical studies to gather insight for future technical and design strategies, research, and initiatives to calibrate the user AI relationship. The findings confirm that there is more than one way to define trust. Selecting the most appropriate trust definition to depict user trust in a specific context should be the focus instead of comparing definitions. User trust in AI-enabled systems is found to be influenced by three main themes, namely socio-ethical considerations, technical and design features, and user characteristics. User characteristics dominate the findings, reinforcing the importance of user involvement from development through to monitoring of AI enabled systems. In conclusion, user trust needs to be addressed directly in every context where AI-enabled systems are being used or discussed. In addition, calibrating the user-AI relationship requires finding the optimal balance that works for not only the user but also the system.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.