Computer Science > Machine Learning
[Submitted on 20 Apr 2023]
Title:"Can We Detect Substance Use Disorder?": Knowledge and Time Aware Classification on Social Media from Darkweb
View PDFAbstract:Opioid and substance misuse is rampant in the United States today, with the phenomenon known as the "opioid crisis". The relationship between substance use and mental health has been extensively studied, with one possible relationship being: substance misuse causes poor mental health. However, the lack of evidence on the relationship has resulted in opioids being largely inaccessible through legal means. This study analyzes the substance use posts on social media with opioids being sold through crypto market listings. We use the Drug Abuse Ontology, state-of-the-art deep learning, and knowledge-aware BERT-based models to generate sentiment and emotion for the social media posts to understand users' perceptions on social media by investigating questions such as: which synthetic opioids people are optimistic, neutral, or negative about? or what kind of drugs induced fear and sorrow? or what kind of drugs people love or are thankful about? or which drugs people think negatively about? or which opioids cause little to no sentimental reaction. We discuss how we crawled crypto market data and its use in extracting posts for fentanyl, fentanyl analogs, and other novel synthetic opioids. We also perform topic analysis associated with the generated sentiments and emotions to understand which topics correlate with people's responses to various drugs. Additionally, we analyze time-aware neural models built on these features while considering historical sentiment and emotional activity of posts related to a drug. The most effective model performs well (statistically significant) with (macroF1=82.12, recall =83.58) to identify substance use disorder.
Submission history
From: Orchid Chetia Phukan [view email][v1] Thu, 20 Apr 2023 17:47:13 UTC (3,200 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.