Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 25 Apr 2023 (v1), last revised 6 Nov 2024 (this version, v3)]
Title:Learning Task-Specific Strategies for Accelerated MRI
View PDF HTML (experimental)Abstract:Compressed sensing magnetic resonance imaging (CS-MRI) seeks to recover visual information from subsampled measurements for diagnostic tasks. Traditional CS-MRI methods often separately address measurement subsampling, image reconstruction, and task prediction, resulting in a suboptimal end-to-end performance. In this work, we propose TACKLE as a unified co-design framework for jointly optimizing subsampling, reconstruction, and prediction strategies for the performance on downstream tasks. The naïve approach of simply appending a task prediction module and training with a task-specific loss leads to suboptimal downstream performance. Instead, we develop a training procedure where a backbone architecture is first trained for a generic pre-training task (image reconstruction in our case), and then fine-tuned for different downstream tasks with a prediction head. Experimental results on multiple public MRI datasets show that TACKLE achieves an improved performance on various tasks over traditional CS-MRI methods. We also demonstrate that TACKLE is robust to distribution shifts by showing that it generalizes to a new dataset we experimentally collected using different acquisition setups from the training data. Without additional fine-tuning, TACKLE leads to both numerical and visual improvements compared to existing baselines. We have further implemented a learned 4$\times$-accelerated sequence on a Siemens 3T MRI Skyra scanner. Compared to the fully-sampling scan that takes 335 seconds, our optimized sequence only takes 84 seconds, achieving a four-fold time reduction as desired, while maintaining high performance.
Submission history
From: Zihui Wu [view email][v1] Tue, 25 Apr 2023 01:12:47 UTC (8,947 KB)
[v2] Wed, 6 Dec 2023 01:10:27 UTC (7,321 KB)
[v3] Wed, 6 Nov 2024 23:44:52 UTC (10,204 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.