Computer Science > Machine Learning
[Submitted on 25 Apr 2023]
Title:GARCIA: Powering Representations of Long-tail Query with Multi-granularity Contrastive Learning
View PDFAbstract:Recently, the growth of service platforms brings great convenience to both users and merchants, where the service search engine plays a vital role in improving the user experience by quickly obtaining desirable results via textual queries. Unfortunately, users' uncontrollable search customs usually bring vast amounts of long-tail queries, which severely threaten the capability of search models. Inspired by recently emerging graph neural networks (GNNs) and contrastive learning (CL), several efforts have been made in alleviating the long-tail issue and achieve considerable performance. Nevertheless, they still face a few major weaknesses. Most importantly, they do not explicitly utilize the contextual structure between heads and tails for effective knowledge transfer, and intention-level information is commonly ignored for more generalized representations.
To this end, we develop a novel framework GARCIA, which exploits the graph based knowledge transfer and intention based representation generalization in a contrastive setting. In particular, we employ an adaptive encoder to produce informative representations for queries and services, as well as hierarchical structure aware representations of intentions. To fully understand tail queries and services, we equip GARCIA with a novel multi-granularity contrastive learning module, which powers representations through knowledge transfer, structure enhancement and intention generalization. Subsequently, the complete GARCIA is well trained in a pre-training&fine-tuning manner. At last, we conduct extensive experiments on both offline and online environments, which demonstrates the superior capability of GARCIA in improving tail queries and overall performance in service search scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.