Mathematics > Numerical Analysis
[Submitted on 27 Apr 2023]
Title:A Linearized L1-Galerkin FEM for Non-smooth Solutions of Kirchhoff type Quasilinear Time-fractional Integro-differential Equation
View PDFAbstract:In this article, we study the semi discrete and fully discrete formulations for a Kirchhoff type quasilinear integro-differential equation involving time-fractional derivative of order $\alpha \in (0,1) $. For the semi discrete formulation of the equation under consideration, we discretize the space domain using a conforming FEM and keep the time variable continuous. We modify the standard Ritz-Volterra projection operator to carry out error analysis for the semi discrete formulation of the considered equation. In general, solutions of the time-fractional partial differential equations (PDEs) have a weak singularity near time $t=0$. Taking this singularity into account, we develop a new linearized fully discrete numerical scheme for the considered equation on a graded mesh in time. We derive a priori bounds on the solution of this fully discrete numerical scheme using a new weighted $H^{1}(\Omega)$ norm. We prove that the developed numerical scheme has an accuracy rate of $O(P^{-1}+N^{-(2-\alpha)})$ in $L^{\infty}(0,T;L^{2}(\Omega))$ as well as in $L^{\infty}(0,T;H^{1}_{0}(\Omega))$, where $P$ and $N$ are degrees of freedom in the space and time directions respectively. The robustness and efficiency of the proposed numerical scheme are demonstrated by some numerical examples.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.