Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Apr 2023]
Title:Human activity recognition using deep learning approaches and single frame cnn and convolutional lstm
View PDFAbstract:Human activity recognition is one of the most important tasks in computer vision and has proved useful in different fields such as healthcare, sports training and security. There are a number of approaches that have been explored to solve this task, some of them involving sensor data, and some involving video data. In this paper, we aim to explore two deep learning-based approaches, namely single frame Convolutional Neural Networks (CNNs) and convolutional Long Short-Term Memory to recognise human actions from videos. Using a convolutional neural networks-based method is advantageous as CNNs can extract features automatically and Long Short-Term Memory networks are great when it comes to working on sequence data such as video. The two models were trained and evaluated on a benchmark action recognition dataset, UCF50, and another dataset that was created for the experimentation. Though both models exhibit good accuracies, the single frame CNN model outperforms the Convolutional LSTM model by having an accuracy of 99.8% with the UCF50 dataset.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.