Computer Science > Cryptography and Security
[Submitted on 28 Apr 2023]
Title:QR-SACP: Quantitative Risk-based Situational Awareness Calculation and Projection through Threat Information Sharing
View PDFAbstract:When a threat is observed, one of the most important challenges is to choose the most appropriate and adequate timely decisions in response to the current and near future situation in order to have the least consequences and costs. Making the appropriate and sufficient decisions requires knowing what situations the threat has engendered or may engender. In this paper, we propose a quantitative risk-based method called QR-SACP to calculate and project situational awareness in a network based on threat information sharing. In this method, we investigate a threat from different aspects and evaluate the threat's effects through dependency weight among a network's services. We calculate the definite effect of a threat on a service and the cascading propagation of the threat's definite effect on other dependent services to that service. In addition, we project the probability of a threat propagation or recurrence of the threat in other network services in three ways: procedurally, network connections and similar infrastructure or services. Experimental results demonstrate that the QR-SACP method can calculate and project definite and probable threats' effects across the entire network and reveal more details about the threat's current and near future situations.
Submission history
From: Mahdieh Safarzadehvahed [view email][v1] Fri, 28 Apr 2023 16:11:48 UTC (917 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.