Computer Science > Computation and Language
[Submitted on 5 May 2023]
Title:Interactive Acquisition of Fine-grained Visual Concepts by Exploiting Semantics of Generic Characterizations in Discourse
View PDFAbstract:Interactive Task Learning (ITL) concerns learning about unforeseen domain concepts via natural interactions with human users. The learner faces a number of significant constraints: learning should be online, incremental and few-shot, as it is expected to perform tangible belief updates right after novel words denoting unforeseen concepts are introduced. In this work, we explore a challenging symbol grounding task--discriminating among object classes that look very similar--within the constraints imposed by ITL. We demonstrate empirically that more data-efficient grounding results from exploiting the truth-conditions of the teacher's generic statements (e.g., "Xs have attribute Z.") and their implicatures in context (e.g., as an answer to "How are Xs and Ys different?", one infers Y lacks attribute Z).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.