Computer Science > Computation and Language
[Submitted on 9 May 2023 (v1), last revised 4 Feb 2024 (this version, v2)]
Title:CharSpan: Utilizing Lexical Similarity to Enable Zero-Shot Machine Translation for Extremely Low-resource Languages
View PDFAbstract:We address the task of machine translation (MT) from extremely low-resource language (ELRL) to English by leveraging cross-lingual transfer from 'closely-related' high-resource language (HRL). The development of an MT system for ELRL is challenging because these languages typically lack parallel corpora and monolingual corpora, and their representations are absent from large multilingual language models. Many ELRLs share lexical similarities with some HRLs, which presents a novel modeling opportunity. However, existing subword-based neural MT models do not explicitly harness this lexical similarity, as they only implicitly align HRL and ELRL latent embedding space. To overcome this limitation, we propose a novel, CharSpan, approach based on 'character-span noise augmentation' into the training data of HRL. This serves as a regularization technique, making the model more robust to 'lexical divergences' between the HRL and ELRL, thus facilitating effective cross-lingual transfer. Our method significantly outperformed strong baselines in zero-shot settings on closely related HRL and ELRL pairs from three diverse language families, emerging as the state-of-the-art model for ELRLs.
Submission history
From: Kaushal Kumar Maurya [view email][v1] Tue, 9 May 2023 07:23:01 UTC (299 KB)
[v2] Sun, 4 Feb 2024 06:21:03 UTC (647 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.