Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 17 May 2023 (v1), last revised 19 Sep 2023 (this version, v2)]
Title:DRackSim: Simulator for Rack-scale Memory Disaggregation
View PDFAbstract:Memory disaggregation has emerged as an alternative to traditional server architecture in data centers. This paper introduces DRackSim, a simulation infrastructure to model rack-scale hardware disaggregated memory. DRackSim models multiple compute nodes, memory pools, and a rack-scale interconnect similar to GenZ. An application-level simulation approach simulates an x86 out-of-order multi-core processor with a multi-level cache hierarchy at compute nodes. A queue-based simulation is used to model a remote memory controller and rack-level interconnect, which allows both cache-based and page-based access to remote memory. DRackSim models a central memory manager to manage address space at the memory pools. We integrate community-accepted DRAMSim2 to perform memory simulation at local and remote memory using multiple DRAMSim2 instances. An incremental approach is followed to validate the core and cache subsystem of DRackSim with that of Gem5. We measure the performance of various HPC workloads and show the performance impact for different nodes/pools configuration.
Submission history
From: Amit Puri [view email][v1] Wed, 17 May 2023 06:17:06 UTC (972 KB)
[v2] Tue, 19 Sep 2023 21:26:52 UTC (2,225 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.