Computer Science > Machine Learning
[Submitted on 18 May 2023 (v1), last revised 27 Sep 2024 (this version, v3)]
Title:A benchmark for computational analysis of animal behavior, using animal-borne tags
View PDF HTML (experimental)Abstract:Animal-borne sensors (`bio-loggers') can record a suite of kinematic and environmental data, which are used to elucidate animal ecophysiology and improve conservation efforts. Machine learning techniques are used for interpreting the large amounts of data recorded by bio-loggers, but there exists no common framework for comparing the different machine learning techniques in this domain. This makes it difficult to, for example, identify patterns in what works well for machine learning-based analysis of bio-logger data. It also makes it difficult to evaluate the effectiveness of novel methods developed by the machine learning community.
To address this, we present the Bio-logger Ethogram Benchmark (BEBE), a collection of datasets with behavioral annotations, as well as a modeling task and evaluation metrics. BEBE is to date the largest, most taxonomically diverse, publicly available benchmark of this type. Using BEBE, we compare the performance of deep and classical machine learning methods for identifying animal behaviors based on bio-logger data. As an example usage of BEBE, we test an approach based on self-supervised learning. To apply this approach to animal behavior classification, we adapt a deep neural network pre-trained with 700,000 hours of data collected from human wrist-worn accelerometers.
We find that deep neural networks out-perform the classical machine learning methods we tested across all nine datasets in BEBE. We additionally find that the approach based on self-supervised learning out-performs the alternatives we tested, especially in settings when there is a low amount of training data available. In light of this, we are able to make concrete suggestions for designing studies that rely on machine learning to infer behavior from bio-logger data. Datasets and code are available at this https URL.
Submission history
From: Benjamin Hoffman [view email][v1] Thu, 18 May 2023 06:20:45 UTC (11,068 KB)
[v2] Wed, 10 Apr 2024 19:13:09 UTC (40,333 KB)
[v3] Fri, 27 Sep 2024 19:04:58 UTC (36,819 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.