Computer Science > Machine Learning
[Submitted on 18 May 2023]
Title:Automatic Design Method of Building Pipeline Layout Based on Deep Reinforcement Learning
View PDFAbstract:The layout design of pipelines is a critical task in the construction industry. Currently, pipeline layout is designed manually by engineers, which is time-consuming and laborious. Automating and streamlining this process can reduce the burden on engineers and save time. In this paper, we propose a method for generating three-dimensional layout of pipelines based on deep reinforcement learning (DRL). Firstly, we abstract the geometric features of space to establish a training environment and define reward functions based on three constraints: pipeline length, elbow, and installation distance. Next, we collect data through interactions between the agent and the environment and train the DRL model. Finally, we use the well-trained DRL model to automatically design a single pipeline. Our results demonstrate that DRL models can complete the pipeline layout task in space in a much shorter time than traditional algorithms while ensuring high-quality layout outcomes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.