Computer Science > Machine Learning
[Submitted on 20 May 2023 (v1), last revised 26 Jan 2024 (this version, v2)]
Title:Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and Eigenvector Disjunctions
View PDFAbstract:Low-rank matrix completion consists of computing a matrix of minimal complexity that recovers a given set of observations as accurately as possible. Unfortunately, existing methods for matrix completion are heuristics that, while highly scalable and often identifying high-quality solutions, do not possess any optimality guarantees. We reexamine matrix completion with an optimality-oriented eye. We reformulate these low-rank problems as convex problems over the non-convex set of projection matrices and implement a disjunctive branch-and-bound scheme that solves them to certifiable optimality. Further, we derive a novel and often tight class of convex relaxations by decomposing a low-rank matrix as a sum of rank-one matrices and incentivizing that two-by-two minors in each rank-one matrix have determinant zero. In numerical experiments, our new convex relaxations decrease the optimality gap by two orders of magnitude compared to existing attempts, and our disjunctive branch-and-bound scheme solves nxn rank-r matrix completion problems to certifiable optimality in hours for n<=150 and r<=5.
Submission history
From: Ryan Cory-Wright [view email][v1] Sat, 20 May 2023 22:04:34 UTC (3,426 KB)
[v2] Fri, 26 Jan 2024 17:34:25 UTC (3,545 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.