Computer Science > Machine Learning
[Submitted on 21 May 2023 (v1), last revised 11 Oct 2024 (this version, v2)]
Title:Federated Offline Policy Learning
View PDF HTML (experimental)Abstract:We consider the problem of learning personalized decision policies from observational bandit feedback data across multiple heterogeneous data sources. In our approach, we introduce a novel regret analysis that establishes finite-sample upper bounds on distinguishing notions of global regret for all data sources on aggregate and of local regret for any given data source. We characterize these regret bounds by expressions of source heterogeneity and distribution shift. Moreover, we examine the practical considerations of this problem in the federated setting where a central server aims to train a policy on data distributed across the heterogeneous sources without collecting any of their raw data. We present a policy learning algorithm amenable to federation based on the aggregation of local policies trained with doubly robust offline policy evaluation strategies. Our analysis and supporting experimental results provide insights into tradeoffs in the participation of heterogeneous data sources in offline policy learning.
Submission history
From: Aldo Carranza [view email][v1] Sun, 21 May 2023 09:08:09 UTC (874 KB)
[v2] Fri, 11 Oct 2024 05:46:36 UTC (2,037 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.