Computer Science > Machine Learning
[Submitted on 22 May 2023 (v1), last revised 19 Jan 2024 (this version, v3)]
Title:Evaluating Privacy Leakage in Split Learning
View PDF HTML (experimental)Abstract:Privacy-Preserving machine learning (PPML) can help us train and deploy models that utilize private information. In particular, on-device machine learning allows us to avoid sharing raw data with a third-party server during inference. On-device models are typically less accurate when compared to their server counterparts due to the fact that (1) they typically only rely on a small set of on-device features and (2) they need to be small enough to run efficiently on end-user devices. Split Learning (SL) is a promising approach that can overcome these limitations. In SL, a large machine learning model is divided into two parts, with the bigger part residing on the server side and a smaller part executing on-device, aiming to incorporate the private features. However, end-to-end training of such models requires exchanging gradients at the cut layer, which might encode private features or labels. In this paper, we provide insights into potential privacy risks associated with SL. Furthermore, we also investigate the effectiveness of various mitigation strategies. Our results indicate that the gradients significantly improve the attackers' effectiveness in all tested datasets reaching almost perfect reconstruction accuracy for some features. However, a small amount of differential privacy (DP) can effectively mitigate this risk without causing significant training degradation.
Submission history
From: Xinchi Qiu [view email][v1] Mon, 22 May 2023 13:00:07 UTC (602 KB)
[v2] Thu, 25 May 2023 15:54:58 UTC (601 KB)
[v3] Fri, 19 Jan 2024 20:35:54 UTC (4,607 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.