Computer Science > Information Retrieval
[Submitted on 24 May 2023]
Title:Collaborative Recommendation Model Based on Multi-modal Multi-view Attention Network: Movie and literature cases
View PDFAbstract:The existing collaborative recommendation models that use multi-modal information emphasize the representation of users' preferences but easily ignore the representation of users' dislikes. Nevertheless, modelling users' dislikes facilitates comprehensively characterizing user profiles. Thus, the representation of users' dislikes should be integrated into the user modelling when we construct a collaborative recommendation model. In this paper, we propose a novel Collaborative Recommendation Model based on Multi-modal multi-view Attention Network (CRMMAN), in which the users are represented from both preference and dislike views. Specifically, the users' historical interactions are divided into positive and negative interactions, used to model the user's preference and dislike views, respectively. Furthermore, the semantic and structural information extracted from the scene is employed to enrich the item representation. We validate CRMMAN by designing contrast experiments based on two benchmark MovieLens-1M and Book-Crossing datasets. Movielens-1m has about a million ratings, and Book-Crossing has about 300,000 ratings. Compared with the state-of-the-art knowledge-graph-based and multi-modal recommendation methods, the AUC, NDCG@5 and NDCG@10 are improved by 2.08%, 2.20% and 2.26% on average of two datasets. We also conduct controlled experiments to explore the effects of multi-modal information and multi-view mechanism. The experimental results show that both of them enhance the model's performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.