Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 May 2023]
Title:A Similarity Alignment Model for Video Copy Segment Matching
View PDFAbstract:With the development of multimedia technology, Video Copy Detection has been a crucial problem for social media platforms. Meta AI hold Video Similarity Challenge on CVPR 2023 to push the technology forward. In this report, we share our winner solutions on Matching Track. We propose a Similarity Alignment Model(SAM) for video copy segment matching. Our SAM exhibits superior performance compared to other competitors, with a 0.108 / 0.144 absolute improvement over the second-place competitor in Phase 1 / Phase 2. Code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.