Computer Science > Computation and Language
[Submitted on 25 May 2023 (v1), last revised 27 Jan 2024 (this version, v2)]
Title:Give Me More Details: Improving Fact-Checking with Latent Retrieval
View PDFAbstract:Evidence plays a crucial role in automated fact-checking. When verifying real-world claims, existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine. Such methods ignore the challenges of collecting evidence and may not provide sufficient information to verify real-world claims. Aiming at building a better fact-checking system, we propose to incorporate full text from source documents as evidence and introduce two enriched datasets. The first one is a multilingual dataset, while the second one is monolingual (English). We further develop a latent variable model to jointly extract evidence sentences from documents and perform claim verification. Experiments indicate that including source documents can provide sufficient contextual clues even when gold evidence sentences are not annotated. The proposed system is able to achieve significant improvements upon best-reported models under different settings.
Submission history
From: Zhijiang Guo [view email][v1] Thu, 25 May 2023 15:01:19 UTC (1,024 KB)
[v2] Sat, 27 Jan 2024 16:43:52 UTC (1,263 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.