Computer Science > Artificial Intelligence
[Submitted on 27 May 2023 (v1), last revised 25 May 2024 (this version, v4)]
Title:MADiff: Offline Multi-agent Learning with Diffusion Models
View PDF HTML (experimental)Abstract:Diffusion model (DM) recently achieved huge success in various scenarios including offline reinforcement learning, where the diffusion planner learn to generate desired trajectories during online evaluations. However, despite the effectiveness in single-agent learning, it remains unclear how DMs can operate in multi-agent problems, where agents can hardly complete teamwork without good coordination by independently modeling each agent's trajectories. In this paper, we propose MADiff, a novel generative multi-agent learning framework to tackle this problem. MADiff is realized with an attention-based diffusion model to model the complex coordination among behaviors of multiple agents. To the best of our knowledge, MADiff is the first diffusion-based multi-agent learning framework, which behaves as both a decentralized policy and a centralized controller. During decentralized executions, MADiff simultaneously performs teammate modeling, and the centralized controller can also be applied in multi-agent trajectory predictions. Our experiments show the superior performance of MADiff compared to baseline algorithms in a wide range of multi-agent learning tasks, which emphasizes the effectiveness of MADiff in modeling complex multi-agent interactions. Our code is available at this https URL.
Submission history
From: Zhengbang Zhu [view email][v1] Sat, 27 May 2023 02:14:09 UTC (2,609 KB)
[v2] Mon, 14 Aug 2023 13:48:38 UTC (2,609 KB)
[v3] Wed, 20 Dec 2023 14:54:15 UTC (3,074 KB)
[v4] Sat, 25 May 2024 13:02:09 UTC (4,013 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.