Computer Science > Computation and Language
[Submitted on 27 May 2023]
Title:Parallel Corpus for Indigenous Language Translation: Spanish-Mazatec and Spanish-Mixtec
View PDFAbstract:In this paper, we present a parallel Spanish-Mazatec and Spanish-Mixtec corpus for machine translation (MT) tasks, where Mazatec and Mixtec are two indigenous Mexican languages. We evaluated the usability of the collected corpus using three different approaches: transformer, transfer learning, and fine-tuning pre-trained multilingual MT models. Fine-tuning the Facebook M2M100-48 model outperformed the other approaches, with BLEU scores of 12.09 and 22.25 for Mazatec-Spanish and Spanish-Mazatec translations, respectively, and 16.75 and 22.15 for Mixtec-Spanish and Spanish-Mixtec translations, respectively. The findings show that the dataset size (9,799 sentences in Mazatec and 13,235 sentences in Mixtec) affects translation performance and that indigenous languages work better when used as target languages. The findings emphasize the importance of creating parallel corpora for indigenous languages and fine-tuning models for low-resource translation tasks. Future research will investigate zero-shot and few-shot learning approaches to further improve translation performance in low-resource settings. The dataset and scripts are available at \url{this https URL}
Submission history
From: Atnafu Lambebo Tonja [view email][v1] Sat, 27 May 2023 08:03:44 UTC (7,115 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.