Computer Science > Formal Languages and Automata Theory
[Submitted on 31 May 2023]
Title:About Decisiveness of Dynamic Probabilistic Models
View PDFAbstract:Decisiveness of infinite Markov chains with respect to some (finite or infinite) target set of states is a key property that allows to compute the reachability probability of this set up to an arbitrary precision. Most of the existing works assume constant weights for defining the probability of a transition in the considered models. However numerous probabilistic modelings require (dynamic) weights that depend on both the current state and the transition. So we introduce a dynamic probabilistic version of counter machine (pCM). After establishing that decisiveness is undecidable for pCMs even with constant weights, we study the decidability of decisiveness for subclasses of pCM. We show that, without restrictions on dynamic weights, decisiveness is undecidable with a single state and single counter pCM. On the contrary with polynomial weights, decisiveness becomes decidable for single counter pCMs under mild conditions. Then we show that decisiveness of probabilistic Petri nets (pPNs) with polynomial weights is undecidable even when the target set is upward-closed unlike the case of constant weights. Finally we prove that the standard subclass of pPNs with a regular language is decisive with respect to a finite set whatever the kind of weights.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.