Computer Science > Human-Computer Interaction
[Submitted on 1 Jun 2023 (v1), last revised 9 Dec 2023 (this version, v2)]
Title:Inferring Mood-While-Eating with Smartphone Sensing and Community-Based Model Personalization
View PDFAbstract:The interplay between mood and eating has been the subject of extensive research within the fields of nutrition and behavioral science, indicating a strong connection between the two. Further, phone sensor data have been used to characterize both eating behavior and mood, independently, in the context of mobile food diaries and mobile health applications. However, limitations within the current body of literature include: i) the lack of investigation around the generalization of mood inference models trained with passive sensor data from a range of everyday life situations, to specific contexts such as eating, ii) no prior studies that use sensor data to study the intersection of mood and eating, and iii) the inadequate examination of model personalization techniques within limited label settings, as we commonly experience in mood inference. In this study, we sought to examine everyday eating behavior and mood using two datasets of college students in Mexico (N_mex = 84, 1843 mood-while-eating reports) and eight countries (N_mul = 678, 329K mood reports incl. 24K mood-while-eating reports), containing both passive smartphone sensing and self-report data. Our results indicate that generic mood inference models decline in performance in certain contexts, such as when eating. Additionally, we found that population-level (non-personalized) and hybrid (partially personalized) modeling techniques were inadequate for the commonly used three-class mood inference task (positive, neutral, negative). Furthermore, we found that user-level modeling was challenging for the majority of participants due to a lack of sufficient labels and data from the negative class. To address these limitations, we employed a novel community-based approach for personalization by building models with data from a set of similar users to a target user.
Submission history
From: Lakmal Meegahapola [view email][v1] Thu, 1 Jun 2023 14:24:10 UTC (1,503 KB)
[v2] Sat, 9 Dec 2023 21:58:40 UTC (1,493 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.