Computer Science > Machine Learning
[Submitted on 2 Jun 2023 (v1), last revised 25 Jan 2024 (this version, v2)]
Title:Context selectivity with dynamic availability enables lifelong continual learning
View PDFAbstract:"You never forget how to ride a bike", -- but how is that possible? The brain is able to learn complex skills, stop the practice for years, learn other skills in between, and still retrieve the original knowledge when necessary. The mechanisms of this capability, referred to as lifelong learning (or continual learning, CL), are unknown. We suggest a bio-plausible meta-plasticity rule building on classical work in CL which we summarize in two principles: (i) neurons are context selective, and (ii) a local availability variable partially freezes the plasticity if the neuron was relevant for previous tasks. In a new neuro-centric formalization of these principles, we suggest that neuron selectivity and neuron-wide consolidation is a simple and viable meta-plasticity hypothesis to enable CL in the brain. In simulation, this simple model balances forgetting and consolidation leading to better transfer learning than contemporary CL algorithms on image recognition and natural language processing CL benchmarks.
Submission history
From: Guillaume Bellec [view email][v1] Fri, 2 Jun 2023 17:04:36 UTC (7,569 KB)
[v2] Thu, 25 Jan 2024 12:41:44 UTC (8,333 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.