Mathematics > Combinatorics
[Submitted on 3 Jun 2023 (v1), last revised 29 Jan 2024 (this version, v2)]
Title:Subchromatic numbers of powers of graphs with excluded minors
View PDF HTML (experimental)Abstract:A $k$-subcolouring of a graph $G$ is a function $f:V(G) \to \{0,\ldots,k-1\}$ such that the set of vertices coloured $i$ induce a disjoint union of cliques. The subchromatic number, $\chi_{\textrm{sub}}(G)$, is the minimum $k$ such that $G$ admits a $k$-subcolouring. Nešetřil, Ossona de Mendez, Pilipczuk, and Zhu (2020), recently raised the problem of finding tight upper bounds for $\chi_{\textrm{sub}}(G^2)$ when $G$ is planar. We show that $\chi_{\textrm{sub}}(G^2)\le 43$ when $G$ is planar, improving their bound of 135. We give even better bounds when the planar graph $G$ has larger girth. Moreover, we show that $\chi_{\textrm{sub}}(G^{3})\le 95$, improving the previous bound of 364. For these we adapt some recent techniques of Almulhim and Kierstead (2022), while also extending the decompositions of triangulated planar graphs of Van den Heuvel, Ossona de Mendez, Quiroz, Rabinovich and Siebertz (2017), to planar graphs of arbitrary girth. Note that these decompositions are the precursors of the graph product structure theorem of planar graphs.
We give improved bounds for $\chi_{\textrm{sub}}(G^p)$ for all $p$, whenever $G$ has bounded treewidth, bounded simple treewidth, bounded genus, or excludes a clique or biclique as a minor. For this we introduce a family of parameters which form a gradation between the strong and the weak colouring numbers. We give upper bounds for these parameters for graphs coming from such classes.
Finally, we give a 2-approximation algorithm for the subchromatic number of graphs coming from any fixed class with bounded layered cliquewidth. In particular, this implies a 2-approximation algorithm for the subchromatic number of powers $G^p$ of graphs coming from any fixed class with bounded layered treewidth (such as the class of planar graphs). This algorithm works even if the power $p$ and the graph $G$ is unknown.
Submission history
From: Benjamin Moore [view email][v1] Sat, 3 Jun 2023 20:58:18 UTC (104 KB)
[v2] Mon, 29 Jan 2024 18:39:31 UTC (170 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.