Computer Science > Machine Learning
[Submitted on 5 Jun 2023]
Title:Online Learning with Feedback Graphs: The True Shape of Regret
View PDFAbstract:Sequential learning with feedback graphs is a natural extension of the multi-armed bandit problem where the problem is equipped with an underlying graph structure that provides additional information - playing an action reveals the losses of all the neighbors of the action. This problem was introduced by \citet{mannor2011} and received considerable attention in recent years. It is generally stated in the literature that the minimax regret rate for this problem is of order $\sqrt{\alpha T}$, where $\alpha$ is the independence number of the graph, and $T$ is the time horizon. However, this is proven only when the number of rounds $T$ is larger than $\alpha^3$, which poses a significant restriction for the usability of this result in large graphs. In this paper, we define a new quantity $R^*$, called the \emph{problem complexity}, and prove that the minimax regret is proportional to $R^*$ for any graph and time horizon $T$. Introducing an intricate exploration strategy, we define the \mainAlgorithm algorithm that achieves the minimax optimal regret bound and becomes the first provably optimal algorithm for this setting, even if $T$ is smaller than $\alpha^3$.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.