Computer Science > Information Retrieval
[Submitted on 5 Jun 2023]
Title:Personalized Federated Domain Adaptation for Item-to-Item Recommendation
View PDFAbstract:Item-to-Item (I2I) recommendation is an important function in most recommendation systems, which generates replacement or complement suggestions for a particular item based on its semantic similarities to other cataloged items. Given that subsets of items in a recommendation system might be co-interacted with by the same set of customers, graph-based models, such as graph neural networks (GNNs), provide a natural framework to combine, ingest and extract valuable insights from such high-order relational interactions between cataloged items, as well as their metadata features, as has been shown in many recent studies. However, learning GNNs effectively for I2I requires ingesting a large amount of relational data, which might not always be available, especially in new, emerging market segments. To mitigate this data bottleneck, we postulate that recommendation patterns learned from existing mature market segments (with private data) could be adapted to build effective warm-start models for emerging ones. To achieve this, we propose and investigate a personalized federated modeling framework based on GNNs to summarize, assemble and adapt recommendation patterns across market segments with heterogeneous customer behaviors into effective local models. Our key contribution is a personalized graph adaptation model that bridges the gap between recent literature on federated GNNs and (non-graph) personalized federated learning, which either does not optimize for the adaptability of the federated model or is restricted to local models with homogeneous parameterization, excluding GNNs with heterogeneous local graphs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.