Quantum Physics
[Submitted on 8 Jun 2023 (v1), last revised 9 Dec 2023 (this version, v3)]
Title:Benchmarking Quantum Surrogate Models on Scarce and Noisy Data
View PDF HTML (experimental)Abstract:Surrogate models are ubiquitously used in industry and academia to efficiently approximate given black box functions. As state-of-the-art methods from classical machine learning frequently struggle to solve this problem accurately for the often scarce and noisy data sets in practical applications, investigating novel approaches is of great interest. Motivated by recent theoretical results indicating that quantum neural networks (QNNs) have the potential to outperform their classical analogs in the presence of scarce and noisy data, we benchmark their qualitative performance for this scenario empirically. Our contribution displays the first application-centered approach of using QNNs as surrogate models on higher dimensional, real world data. When compared to a classical artificial neural network with a similar number of parameters, our QNN demonstrates significantly better results for noisy and scarce data, and thus motivates future work to explore this potential quantum advantage in surrogate modelling. Finally, we demonstrate the performance of current NISQ hardware experimentally and estimate the gate fidelities necessary to replicate our simulation results.
Submission history
From: Jonas Stein [view email][v1] Thu, 8 Jun 2023 08:49:58 UTC (4,436 KB)
[v2] Sun, 22 Oct 2023 16:22:03 UTC (3,898 KB)
[v3] Sat, 9 Dec 2023 12:26:10 UTC (3,336 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.