Computer Science > Machine Learning
[Submitted on 12 Jun 2023]
Title:Robustifying DARTS by Eliminating Information Bypass Leakage via Explicit Sparse Regularization
View PDFAbstract:Differentiable architecture search (DARTS) is a promising end to end NAS method which directly optimizes the architecture parameters through general gradient descent. However, DARTS is brittle to the catastrophic failure incurred by the skip connection in the search space. Recent studies also cast doubt on the basic underlying hypotheses of DARTS which are argued to be inherently prone to the performance discrepancy between the continuous-relaxed supernet in the training phase and the discretized finalnet in the evaluation phase. We figure out that the robustness problem and the skepticism can both be explained by the information bypass leakage during the training of the supernet. This naturally highlights the vital role of the sparsity of architecture parameters in the training phase which has not been well developed in the past. We thus propose a novel sparse-regularized approximation and an efficient mixed-sparsity training scheme to robustify DARTS by eliminating the information bypass leakage. We subsequently conduct extensive experiments on multiple search spaces to demonstrate the effectiveness of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.