Computer Science > Information Retrieval
[Submitted on 13 Jun 2023]
Title:ReadProbe: A Demo of Retrieval-Enhanced Large Language Models to Support Lateral Reading
View PDFAbstract:With the rapid growth and spread of online misinformation, people need tools to help them evaluate the credibility and accuracy of online information. Lateral reading, a strategy that involves cross-referencing information with multiple sources, may be an effective approach to achieving this goal. In this paper, we present ReadProbe, a tool to support lateral reading, powered by generative large language models from OpenAI and the Bing search engine. Our tool is able to generate useful questions for lateral reading, scour the web for relevant documents, and generate well-attributed answers to help people better evaluate online information. We made a web-based application to demonstrate how ReadProbe can help reduce the risk of being misled by false information. The code is available at this https URL. An earlier version of our tool won the first prize in a national AI misinformation hackathon.
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.