Quantitative Finance > General Finance
[Submitted on 17 May 2023]
Title:Leveraging Machine Learning for Multichain DeFi Fraud Detection
View PDFAbstract:Since the inception of permissionless blockchains with Bitcoin in 2008, it became apparent that their most well-suited use case is related to making the financial system and its advantages available to everyone seamlessly without depending on any trusted intermediaries. Smart contracts across chains provide an ecosystem of decentralized finance (DeFi), where users can interact with lending pools, Automated Market Maker (AMM) exchanges, stablecoins, derivatives, etc. with a cumulative locked value which had exceeded 160B USD. While DeFi comes with high rewards, it also carries plenty of risks. Many financial crimes have occurred over the years making the early detection of malicious activity an issue of high priority. The proposed framework introduces an effective method for extracting a set of features from different chains, including the largest one, Ethereum and it is evaluated over an extensive dataset we gathered with the transactions of the most widely used DeFi protocols (23 in total, including Aave, Compound, Curve, Lido, and Yearn) based on a novel dataset in collaboration with Covalent. Different Machine Learning methods were employed, such as XGBoost and a Neural Network for identifying fraud accounts detection interacting with DeFi and we demonstrate that the introduction of novel DeFi-related features, significantly improves the evaluation results, where Accuracy, Precision, Recall, F1-score and F2-score where utilized.
Submission history
From: Georgios Palaiokrassas [view email][v1] Wed, 17 May 2023 15:48:21 UTC (1,658 KB)
Current browse context:
q-fin.GN
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.