Computer Science > Software Engineering
[Submitted on 15 Jun 2023]
Title:MuRS: Mutant Ranking and Suppression using Identifier Templates
View PDFAbstract:Diff-based mutation testing is a mutation testing approach that only mutates lines affected by a code change under review. Google's mutation testing service integrates diff-based mutation testing into the code review process and continuously gathers developer feedback on mutants surfaced during code review. To enhance the developer experience, the mutation testing service implements a number of suppression rules, which target not-useful mutants-that is, mutants that have consistently received negative developer feedback. However, while effective, manually implementing suppression rules require significant engineering time. An automatic system to rank and suppress mutants would facilitate the maintenance of the mutation testing service. This paper proposes and evaluates MuRS, an automated approach that groups mutants by patterns in the source code under test and uses these patterns to rank and suppress future mutants based on historical developer feedback on mutants in the same group. To evaluate MuRS, we conducted an A/B testing study, comparing MuRS to the existing mutation testing service. Despite the strong baseline, which uses manually developed suppression rules, the results show a statistically significantly lower negative feedback ratio of 11.45% for MuRS versus 12.41% for the baseline. The results also show that MuRS is able to recover existing suppression rules implemented in the baseline. Finally, the results show that statement-deletion mutant groups received both the most positive and negative developer feedback, suggesting a need for additional context that can distinguish between useful and not-useful mutants in these groups. Overall, MuRS has the potential to substantially reduce the development and maintenance cost for an effective mutation testing service by automatically learning suppression rules.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.