Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Jun 2023]
Title:Frame Fusion with Vehicle Motion Prediction for 3D Object Detection
View PDFAbstract:In LiDAR-based 3D detection, history point clouds contain rich temporal information helpful for future prediction. In the same way, history detections should contribute to future detections. In this paper, we propose a detection enhancement method, namely FrameFusion, which improves 3D object detection results by fusing history frames. In FrameFusion, we ''forward'' history frames to the current frame and apply weighted Non-Maximum-Suppression on dense bounding boxes to obtain a fused frame with merged boxes. To ''forward'' frames, we use vehicle motion models to estimate the future pose of the bounding boxes. However, the commonly used constant velocity model fails naturally on turning vehicles, so we explore two vehicle motion models to address this issue. On Waymo Open Dataset, our FrameFusion method consistently improves the performance of various 3D detectors by about $2$ vehicle level 2 APH with negligible latency and slightly enhances the performance of the temporal fusion method MPPNet. We also conduct extensive experiments on motion model selection.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.