Computer Science > Performance
[Submitted on 19 Jun 2023]
Title:Performance and Reliability Analysis for Practical Byzantine Fault Tolerance with Repairable Voting Nodes
View PDFAbstract:The practical Byzantine fault tolerant (PBFT) consensus protocol is one of the basic consensus protocols in the development of blockchain technology. At the same time, the PBFT consensus protocol forms a basis for some other important BFT consensus protocols, such as Tendermint, Streamlet, HotStuff, and LibraBFT. In general, the voting nodes may always fail so that they can leave the PBFT-based blockchain system in a random time interval, making the number of timely available voting nodes uncertain. Thus, this uncertainty leads to the analysis of the PBFT-based blockchain systems with repairable voting nodes being more challenging. In this paper, we develop a novel PBFT consensus protocol with repairable voting nodes and study such a new blockchain system using a multi-dimensional Markov process and the first passage time method. Based on this, we provide performance and reliability analysis, including throughput, availability, and reliability, for the new PBFT-based blockchain system with repairable voting nodes. Furthermore, we provide an approximate algorithm for computing the throughput of the new PBFT-based blockchain system. We employ numerical examples to demonstrate the validity of our theoretical results and illustrate how the key system parameters influence performance measures of the PBFT-based blockchain system with repairable voting nodes. We hope the methodology and results developed in this paper will stimulate future research endeavors and open up new research trajectories in this field.
Current browse context:
cs.PF
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.