Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Jun 2023]
Title:Lightweight wood panel defect detection method incorporating attention mechanism and feature fusion network
View PDFAbstract:In recent years, deep learning has made significant progress in wood panel defect detection. However, there are still challenges such as low detection , slow detection speed, and difficulties in deploying embedded devices on wood panel surfaces. To overcome these issues, we propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion this http URL, to enhance the detection capability of acceptable defects, we introduce the Multi-scale Bi-directional Feature Pyramid Network (MBiFPN) as a feature fusion network. The MBiFPN reduces feature loss, enriches local and detailed features, and improves the model's detection capability for acceptable this http URL, to achieve a lightweight design, we reconstruct the ShuffleNetv2 network model as the backbone network. This reconstruction reduces the number of parameters and computational requirements while maintaining performance. We also introduce the Stem Block and Spatial Pyramid Pooling Fast (SPPF) models to compensate for any accuracy loss resulting from the lightweight design, ensuring the model's detection capabilities remain intact while being computationally this http URL, we enhance the backbone network by incorporating Efficient Channel Attention (ECA), which improves the network's focus on key information relevant to defect detection. By attending to essential features, the model becomes more proficient in accurately identifying and localizing this http URL validate the proposed method using a self-developed wood panel defect this http URL experimental results demonstrate the effectiveness of the improved YOLOv5-LW method. Compared to the original model, our approach achieves a 92.8\% accuracy rate, reduces the number of parameters by 27.78\%, compresses computational volume by 41.25\%, improves detection inference speed by 10.16\%
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.