Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Jun 2023]
Title:Real-Time Fully Unsupervised Domain Adaptation for Lane Detection in Autonomous Driving
View PDFAbstract:While deep neural networks are being utilized heavily for autonomous driving, they need to be adapted to new unseen environmental conditions for which they were not trained. We focus on a safety critical application of lane detection, and propose a lightweight, fully unsupervised, real-time adaptation approach that only adapts the batch-normalization parameters of the model. We demonstrate that our technique can perform inference, followed by on-device adaptation, under a tight constraint of 30 FPS on Nvidia Jetson Orin. It shows similar accuracy (avg. of 92.19%) as a state-of-the-art semi-supervised adaptation algorithm but which does not support real-time adaptation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.