Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Jun 2023 (v1), last revised 8 Feb 2024 (this version, v2)]
Title:Robust Roadside Perception: an Automated Data Synthesis Pipeline Minimizing Human Annotation
View PDF HTML (experimental)Abstract:Recently, advancements in vehicle-to-infrastructure communication technologies have elevated the significance of infrastructure-based roadside perception systems for cooperative driving. This paper delves into one of its most pivotal challenges: data insufficiency. The lacking of high-quality labeled roadside sensor data with high diversity leads to low robustness, and low transfer-ability of current roadside perception systems. In this paper, a novel solution is proposed to address this problem that creates synthesized training data using Augmented Reality. A Generative Adversarial Network is then applied to enhance the reality further, that produces a photo-realistic synthesized dataset that is capable of training or fine-tuning a roadside perception detector which is robust to different weather and lighting conditions. Our approach was rigorously tested at two key intersections in Michigan, USA: the Mcity intersection and the State St./Ellsworth Rd roundabout. The Mcity intersection is located within the Mcity test field, a controlled testing environment. In contrast, the State St./Ellsworth Rd intersection is a bustling roundabout notorious for its high traffic flow and a significant number of accidents annually. Experimental results demonstrate that detectors trained solely on synthesized data exhibit commendable performance across all conditions. Furthermore, when integrated with labeled data, the synthesized data can notably bolster the performance of pre-existing detectors, especially in adverse conditions.
Submission history
From: Depu Meng [view email][v1] Thu, 29 Jun 2023 21:00:57 UTC (4,253 KB)
[v2] Thu, 8 Feb 2024 20:08:37 UTC (7,170 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.