Computer Science > Machine Learning
[Submitted on 2 Jul 2023 (v1), last revised 13 Feb 2024 (this version, v3)]
Title:Active Sensing with Predictive Coding and Uncertainty Minimization
View PDFAbstract:We present an end-to-end procedure for embodied exploration inspired by two biological computations: predictive coding and uncertainty minimization. The procedure can be applied to exploration settings in a task-independent and intrinsically driven manner. We first demonstrate our approach in a maze navigation task and show that it can discover the underlying transition distributions and spatial features of the environment. Second, we apply our model to a more complex active vision task, where an agent actively samples its visual environment to gather information. We show that our model builds unsupervised representations through exploration that allow it to efficiently categorize visual scenes. We further show that using these representations for downstream classification leads to superior data efficiency and learning speed compared to other baselines while maintaining lower parameter complexity. Finally, the modularity of our model allows us to probe its internal mechanisms and analyze the interaction between perception and action during exploration.
Submission history
From: Abdelrahman Sharafeldin [view email][v1] Sun, 2 Jul 2023 21:14:49 UTC (31,554 KB)
[v2] Tue, 4 Jul 2023 19:18:22 UTC (31,553 KB)
[v3] Tue, 13 Feb 2024 05:13:26 UTC (33,083 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.