Computer Science > Information Theory
[Submitted on 5 Jul 2023 (v1), last revised 18 Dec 2023 (this version, v2)]
Title:Multi-IRS-Enabled Integrated Sensing and Communications
View PDF HTML (experimental)Abstract:This paper studies a multi-intelligent-reflecting-surface-(IRS)-enabled integrated sensing and communications (ISAC) system, in which multiple IRSs are installed to help the base station (BS) provide ISAC services at separate line-of-sight (LoS) blocked areas. We focus on the scenario with semi-passive uniform linear array (ULA) IRSs for sensing, in which each IRS is integrated with dedicated sensors for processing echo signals, and each IRS simultaneously serves one sensing target and multiple communication users (CUs) in its coverage area. In particular, we suppose that the BS sends combined information and dedicated sensing signals for ISAC. Two cases with point and extended targets are considered, in which each IRS aims to estimate the direction-of-arrival (DoA) of the corresponding target and the complete target response matrix, respectively. Under this setup, we first derive the closed-form Cram{é}r-Rao bounds (CRBs) for parameters estimation under the two target models. For the point target case, the CRB for DoA estimation is shown to be inversely proportional to the cubic of the number of sensors at each IRS, while for the extended target case, the CRB for target response matrix estimation is proportional to the number of IRS sensors. Next, we consider two different types of CU receivers that can and cannot cancel the interference from dedicated sensing signals prior to information decoding. To achieve fair and optimized sensing performance, we minimize the maximum CRB at all IRSs for the two target cases, via jointly optimizing the transmit beamformers at the BS and the reflective beamformers at the multiple IRSs, subject to the minimum signal-to-interference-plus-noise ratio (SINR) constraints at individual CUs, the maximum transmit power constraint at the BS, and the unit-modulus constraints at the multiple IRSs.
Submission history
From: Yuan Fang [view email][v1] Wed, 5 Jul 2023 12:35:14 UTC (553 KB)
[v2] Mon, 18 Dec 2023 03:14:03 UTC (613 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.