Computer Science > Computational Geometry
[Submitted on 5 Jul 2023]
Title:The Calissons Puzzle
View PDFAbstract:In 2022, Olivier Longuet, a French mathematics teacher, created a game called the \textit{calissons puzzle}. Given a triangular grid in a hexagon and some given edges of the grid, the problem is to find a calisson tiling such that no input edge is overlapped and calissons adjacent to an input edge have different orientations. We extend the puzzle to regions $R$ that are not necessarily hexagonal. The first interesting property of this puzzle is that, unlike the usual calisson or domino problems, it is solved neither by a maximal matching algorithm, nor by Thurston's algorithm. This raises the question of its complexity.
We prove that if the region $R$ is finite and simply connected, then the puzzle can be solved by an algorithm that we call the \textit{advancing surface algorithm} and whose complexity is $O(|\partial R|^3)$ where $\partial R|$ is the size of the boundary of the region $R$. In the case where the region is the entire infinite triangular grid, we prove that the existence of a solution can be solved with an algorithm of complexity $O(|X|^3)$ where $X$ is the set of input edges. To prove these theorems, we revisit William Thurston's results on the calisson tilability of a region $R$. The solutions involve equivalence between calisson tilings, stepped surfaces and certain DAG cuts that avoid passing through a set of edges that we call \textit{unbreakable}. It allows us to generalize Thurston's theorem characterizing tilable regions by rewriting it in terms of descending paths or absorbing cycles. Thurston's algorithm appears as a distance calculation algorithm following Dijkstra's paradigm. The introduction of a set $X$ of interior edges introduces negative weights that force a Bellman-Ford strategy to be preferred. These results extend Thurston's legacy by using computer science structures and algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.