Computer Science > Machine Learning
[Submitted on 10 Jul 2023 (v1), last revised 1 Feb 2024 (this version, v2)]
Title:Towards Cross-Table Masked Pretraining for Web Data Mining
View PDF HTML (experimental)Abstract:Tabular data pervades the landscape of the World Wide Web, playing a foundational role in the digital architecture that underpins online information. Given the recent influence of large-scale pretrained models like ChatGPT and SAM across various domains, exploring the application of pretraining techniques for mining tabular data on the web has emerged as a highly promising research direction. Indeed, there have been some recent works around this topic where most (if not all) of them are limited in the scope of a fixed-schema/single table. Due to the scale of the dataset and the parameter size of the prior models, we believe that we have not reached the ''BERT moment'' for the ubiquitous tabular data. The development on this line significantly lags behind the counterpart research domains such as natural language processing. In this work, we first identify the crucial challenges behind tabular data pretraining, particularly overcoming the cross-table hurdle. As a pioneering endeavor, this work mainly (i)-contributes a high-quality real-world tabular dataset, (ii)-proposes an innovative, generic, and efficient cross-table pretraining framework, dubbed as CM2, where the core to it comprises a semantic-aware tabular neural network that uniformly encodes heterogeneous tables without much restriction and (iii)-introduces a novel pretraining objective -- prompt Masked Table Modeling (pMTM) -- inspired by NLP but intricately tailored to scalable pretraining on tables. Our extensive experiments demonstrate CM2's state-of-the-art performance and validate that cross-table pretraining can enhance various downstream tasks.
Submission history
From: Chao Ye [view email][v1] Mon, 10 Jul 2023 02:27:38 UTC (8,168 KB)
[v2] Thu, 1 Feb 2024 14:54:00 UTC (591 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.